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Nonreciprocal 'Two-Ports Represented by
Modified Wheeler Networks+

H. M. ALTSCHULER{ axp W. K. KAHNY

Summary—The extension of the (reciprocal) modified Wheeler
network to include the more general nonreciprocal two-port is given.
This representation is derived via a known decomposition of the
general nonreciprocal network into two portions, one reciprocal, the
other nonreciprocal. The reciprocal portion is then taken as the
modified Wheeler network. Recombination of the elements results
in the desired representation which is constituted of a minimum
number, i.e., of eight, passive elements. Each of these is a natural
idealization of a physical microwave component. Since six of the ele-
ments belong to the class of ‘‘bilaterally matched” networks, some
of the properties of this class are discussed. Two of the bilaterally
matched elements embody the nonreciprocal properties of the net-
work: a one-way attenuator and a one-way phase-shifter. Many of
the characteristics of the (reciprocal) modified Wheeler network
carry over directly to this nonreciprocal representation. The micro-
wave measurement of the network parameters is also indicated.

INTRODUCTION
Q- DIRECT extension of a representation of recipro-

cal two-ports to the case of nonreciprocal two-

ports has recently been described by Haus.! In
his paper he has given the decomposition of the general
nonreciprocal two-port into a reciprocal two-port and a
nonreciprocal one with certain useful commutation
properties. His choice of the Weissfloch network for
the reciprocal portion has resulted in essentially two
different representations. One of these, consisting of
eight elements, is “mixed” in that the elements of the
reciprocal portion are expressed in standard impedance
(i.e., resistance and reactance) terms, while the non-
reciprocal portion is expressed in terms of its ABCD
coefficients. The other representation indicated employs
three gyrators in conjunction with ten impedance
parameters and is by comparison with the first repre-
sentation quite complicated. Clearly these parameters
are not all independent of one another. Their inter-
dependence is expressed by relatively complex equa-
tions.

What appears to be a more attractive representation,
and one more meaningful to the microwave engineer,
may be obtained in a manner similar to that employed
by Haus, when the modified Wheeler network,* instead
of the Weissfloch network, is used to represent the recip-

* Manuscript received by the PGMTT, July 16, 1956. Presented
before the National Symposium on Microwave Techniques, Phila-
delphia, Pa., February 2-3, 1956. The work described in this report
was conducted under Contract AF-19(604)-890 sponsored by the
AF Cambridge Res. Ctr.

+ Microwave Res. Inst., Polytechnic Inst. of Brooklyn, Brook-
Iyn, N. Y

1 H. A. Haus, “Equivalent circuit for a passive nonreciprocal net-
work,” J. Appl. Phys., vol. 25, pp. 1500-1502; December, 1954.

2 H, M. Altschuler, “A method of measuring dissipative four-poles
based on a modified Wheeler network,” IRE TraNs., vol. MTT-3,
pp. 30-36; January, 1955; and “Representation and measurement of
a dissipative four-pole by means of a modified Wheeler network,”
IRE TRraNs., vol. PGI 4, pp. 84-90; October, 1955.

rocal portion. In that case the nonreciprocal elements
which are employed are, with the exception of their
“one-way” properties, conceptually similar to the reflec-
tion coefficient transformer (or ideal attenuator) and
the transmission lines which form part of the reciprocal
modified Wheeler network. In this sense the present net-
work representation is “homogeneous.” Furthermore,
at any single frequency this network is highly suggestive
of a procedure for synthesizing a nonreciprocal micro-
wave two-port structure with the properties exhibited
by the network. The network consists of the minimum
number of elements required to represent a nonrecipro-
cal two-port, 4.e., of eight independent elements which
are the natural idealizations of physical microwave com-
ponents.

All but two of the network elements are “bilaterally
matched.” Hence special attention has been paid to the
class of bilaterally matched networks. In particular,
a simple multiplication rule for their scattering matrices
has been stated which permits the ready manipulation
of such elements. Appendix Il summarizes the various
bilaterally matched elements which are of interest here,
together with their scattering matrices and the network
symbols used to represent them.

In the evaluation of particular two-ports as com-
ponents for use in a microwave system, it is pointed
to distinguish certain “essential properties” of the com-
ponent from those which may be adjusted by the addi-
tion of lossless reciprocal networks (tuners) at the
ports. These “essential properties” of a two-port, dissi-
pation and nonreciprocal behavior, are explicitly exhi-
bited by distinct bilaterally matched elements in the
modified Wheeler representation. The ultimate limita-
tions on the performance of a tandem connection of
such components may then be inferred by inspection.

As in the case treated by Haus, the measurement of
the network parameters here consists of the known meas-
urement of the reciprocal (modified Wheeler) network
in conjunction with the measurements necessary to ob-
tain the additional nonreciprocal parameters.

THE IDEAL AMPLIFIER PHASE SHIFTER

The general linear, nonreciprocal, (not necessarily
passive) two-port can always be decomposed® into a
reciprocal two-port in tandem with a nonreciprocal
two-port, as shown in Fig. 1 and (1). (See Appendix I
for definitions of 4, B, C, D).

¢ H. Schultz, “The transformation, of the quadripole chain-
matrix into diagonal form,” Arch. El. Ubertr., vol. 5, pp. 257-266;
June, 1951.
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Fig. 1—Decomposition of general two-port.
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While this particular break-up is not the only one
possible, it is unique when, in addition, it is required
that the matrix representing the nonreciprocal two-port
commute with ¢/l other matrices, <.e., that it be a scalar
matrix. It can be seen that this requirement can, in
general, be met when one recalls that reciprocal two-
ports must obey the condition

AoDy — BiCo = 1, (2)

and when the matrix representing the general non-
reciprocal two-port is decomposed as follows:

<1‘1 B _ (Ao By <k€_]¢ 0
C D) T \G, Do) 0 ke-f">’
Ay B [ 1 <A B
(c0 D0> B [\/A'D — BC\C D)]
(" D) = [var=me () | G
0 ke—fcb)"[\/ - <o 1)] 3)

This decomposition assures that A¢Dy—B¢Co=1 and
vields the definition ke~ ®=+/4D— BC. The ambiguity
in phase angle introduced by the square root is trivial.

The nonreciprocal two-port defined by the scalar
matrix in (3) has been termed! “ideal amplifier phase
shifter,” and in a somewhat different context,* “ratio
repeater.” The scalar matrix ke™%-I (where I is the
unit matrix), of course, commutes with all other ma-
trices. It follows that the ideal amplifier phase shifter
represented by it “commutes” with all other networks;
i.e., its effect on the properties of a cascade of net-
works is completely independent of its position within
the cascade.

For certain ideal or degenerate two-ports the termi-
nal quantities (e.g., V, I or @, b) at the in- and out-ports
are not uniquely related. Examples are the one-way line
(Ser=1, S12=0) and the degenerate two-port consisting
of two entircly separate one-ports. Transfer descrip-
tions of such two-ports are singular. In terms of the
scattering matrix and the particular transfer descrip-
tion employed (Appendix I) one has generally

where

+ Harold A. Wheeler, “Generalized transformer concepts for feed-
back amplifiers and filter networks,” Wheeler Monecgraph no. §;
August, 1948.
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AD — BC =0 i Sye = 0.
A, B, C, D do not exist if So; = 0

The physical content of (3), and the discussions based
on it which lead to the extended form of the modified
Wheeler network, is preserved by a limiting argument.
It is assumed that Ss and Sis are always finite, no
matter how small.

By the application of formulas given in Appendix I,
the scattering matrix for the ideal amplifier phase shifter
can be shown to be

( 0 ke‘f‘i’>
ke 0 )"

This class of two-ports, 7.e., those described by scattering
matrices with S;; =0, Sy,,=0, and their properties are
of special interest and consequently discussed below.

(4)

BirATERALLY MATCHED NETWORKS

Two-ports characterized by zero values for the co-
efficients Sy; and Spe are said to be “bilaterally matched.”
This implies that no reflections arise at the in-port when
the out-port is terminated in its characteristic im-
pedance and vice versa. The general (normalized) scat-
tering matrix of this class of networks is given by

(. o)
n 0/
where Sip and S» are arbitrary complex numbers. Of
course, the ideal amplifier phase shifter is a member of

this class [see (4)]. From the well-known input-output
(voltage reflection coefficient) relation

-~ (511522 e SIZSZH)Tout —Su
" Serollt -1

)

(6)

one sees, by inspection, that for bilaterally matched
two-ports
I'in = 512S21Fout- (7)

In view of the absence of any reflections at their
junction, when two such two-ports, say

< 0 S12'> ( 0 Sm”)
and ,
Sn’ 0 S/ 0

are placed in tandem it is recognized that the scattering
matrix of the tandem combination is

( 0 Slz'Sm”)
Su'Su” 0 /)

One may then define the following multiplication rule:

(O 512’> (O Sw”) ( 0 512'512”) )
S’ 0 S/’ 0 S21"Sar’ 0 ’

where this product, which will be referred to here as
“star-product,” applies specifically to the scattering
matrices of bilaterally matched two-ports which have
been placed in tandem. Eq. (8) also implies that any
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bilaterally matched two-port may be arbitrarily de-
composed, in accordance with the star-product rule,
into two or more bilaterally matched two-ports in tan-
dem. In addition it follows from (8) that all two-ports
or network elements in this class commute with each
other, 7.e., the order of anv two or more adjacent bilater-
ally matched two-ports may be interchanged without
affecting the properties of the over-all network.

Tue (REciprocAL) MopirIED WHEELER NETWORK

The modified Wheeler network, which is shown in
Fig. 2, and methods for its measurement have already

4 ™
|

{
-4 |
|

7 hn, o/ /or oy,

wY

Fig. 2—Modified Wheeler network.

been described in detail elsewhere.? This network is a
suitable representation of dissipative, reciprocal, pas-
sive, linear two-ports and consists of three lossless trans-
mission lines Iy, Iz, and [, two ideal transformers #;:1 and
1:ms, and a “reflection coefficient transformer” K. The
latter element® is an ideal attenuator in that its scatter-

ing matrix is

0 K

( ), 0K Z1. (9)
K 0

The phase constant 8 of the transmission lines /; and /
is that associated with the in-port, while §8’, the phase
constant of line /, is associated with the out-port. It
is also pertinent to point out that the scattering matrix
of a lossless transmission line of electrical length 6 is

0 ¢
<e‘7" 0)'

EXTENSION OF THE MoODIFIED WHEELER NETWORK
170 THE NONRECIPROCAL CASE

(10

The method used by Haus! in conjunction with the
Weissfloch network to represent nonreciprocal two-
ports can also be employed advantageously with re-
spect to the modified Wheeler representation. Assum-
ing the network break-up given in Fig. 1 and (1), one
may represent the reciprocal two-port by the modified
Wheeler network shown in Fig. 2. The ideal amplifier
phase shifter (ke=®]) is then commuted to a new posi-
tion between the elements K and /, and the three bi-
laterally matched elements (K, ke—'®I, /) now located
between the two transformers are examined as indicated
below in conjunction with Fig. 3.

5 In terms of the notation used by Altschuler, op. cit., K is de-
fined by K2=[T,]|.
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Fig. 3—Three bilaterally matched elements.

The three elements when taken together are repre-
sented by the star-product of their scattering matrices,
[see (4), (9), and (10)] which when decomposed into a
phase and a magnitude portion yields

0 Kk 0 16t
(e 0 )™ )

Since all the dissipation or amplification produced by
the over-all network [such as in Fig. 1(a)] is expressed
by the magnitude portion of (12), it is required that for
passive networks this portion alone is also passive, 7.e.,
that the scattering parameters of the magnitude por-
tion are subject to the condition

(1D

| Si2] =Kk <1 and |Su

=K/t (12)

Here K is restricted as indicated in (9) and & may con-
sequently be larger than unity. In any case, one will
have either <1 or 1/ <1. One can, therefore, demand
a decomposition of the magnitude portion into two
parts: one, a reciprocal passive element (Si2=Sa=<1);
the other, a nonreciprocal passive attenuator element
of such a type that complete transmission takes place
in one direction (z.e., either {Sml =1, or 1521{ =1).
Depending on the magnitude of & one then has

0 & 0 K/
. for k < 1. (13a)
10/ \K/k 0
0 1 0 Kk
or x forkz=1. (13b)
1/82 0/ \Kk 0

Analogously, the phase portion of (11) mav be de-
composed into

O ¢ 12 0 e 1(6—d)

(1 0 >*<€_].(0_®) 0 >0r (14a)
0 1 0 i)

<e?2‘1> 0>N<6—J(5+¢) 0 ) (14D)

There is little reason to choose one alternative over
the other in (14).

It is now seen from (13) and (14) that the elements in
Fig. 3 can be represented by the star-product

<o k2> ( 0 K/k> (0 %
10/ \x/e 0/)\1 o )
e‘](9~®)

0
*< o 0 ), forks1 (15a)
iti—
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or by

< 0 1> ( 0 l(k) ( 0 1 ( 0 o—i(6+®)
/8 0/ \KEk 0 ) \e o>* it 0 )’
for k= 1. (15b)

The reciprocal elements (Si2 =Sa) of (15) are recognized
to be of the form of the elements described by (9) and
{10). The remaining elements (Siz=1 or Su=1) are
“one-way” devices, in particular “one-way attenuators”:

0 k2 0 1
< ) for k=1 or < > for k=1, (16)
10 1/ 0

and “one-way phase shifters”

or .
1 0 e 0

(1n

The associated network symbols, input-output relations,

etc., are listed in Appendix II.

Based on the break-up given in (15) passive non-
reciprocal two-ports can now be conveniently repre-
sented as shown in Fig. 4(a) or 4(b). Here 6,=4l,
§=p1, and 8, =0'l,. It is recognized that the particular
break-up employed is only one of an infinite variety of
possible ones; however, it is unique and meaningful in
that each of the resulting elements performs a single
well-defined function and is described by a single real
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Fig. 4—Extension of the modified Wheeler net-
work to the nonreciprocal case.

number. Elements have been chosen in such a manner
that (in the case of passive networks) all resulting ele-
ments are again necessarily passive. Clearly, when
active networks are considered, elements such as “recip-
rocal amplifiers” or “one-way amplifiers” can be de-
fined. As in the reciprocal case of the modified Wheeler
network, all characteristic impedances are normalized
to unity and the phase constant of the elements between
transformers is arbitrarily assumed to be that associated
with the in-port.

Each of the elements employed is particularly signif-
icant in context with certain practical microwave-
structures in that close equivalences exist as shown in
Table I (below). The elements of the network of Fig.

TABLE 1
Idealized Component Employed Representation
Element in Realization of of Component

Element

y o——"""3—0

Transmission Waveguide
Hine o—f—F—0
Ideal Lossless
transformer discontinuity
Reflection Well matched =<0 }0
coefficient practical
transformer attenuator o—eto——}0

One-way phase

Well matched practical

shifter nonreciprocal ' phass
shifter
o ___ o4 o
| = = .
One=way Well matched practical 0—{><-—-°—{><—O-fl o ""}-0
attenuator nonreciprocal
attenuator

o—p><—F-oi——3o{  __t+o{ 0
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4 consequently have physical meaning and lend them-
selves to a procedure for synthesizing physical two-ports
with the properties of the network at the given fre-
quency. The fact that the available microwave com-
ponents are composite of our idealized elements is readily
overcome in view of the commutivity of the bilaterally
matched elements and the simple computations afforded
by the star-product rule.

The break-up given here of the portion of the network
between the transformers is to be looked upon as a
systematic network description employing ideal ele-
ments which are defined in terms of their function and
which may serve as a guide to synthesizing two-port
structures with the properties of the network at the
given frequency. With respect to such “synthesis,”
it is recognized that the reflection coefficient transform-
er, for example, must be realized by means of the at-
tenuation of a practical nonreciprocal attenuator in
conjunction with the small reciprocal attenuation in-
herent in such components. Once the present point of
view is adopted, it is of course adequate for many pur-
poses to lump the three bilaterally matched elements
(in Fig. 3) into a single network. The scattering matrix
of this combination is

K be—i@+6)
). (18)

0
K/ke 1@

The distinction between the “essential properties”
of a two-port and those properties which may be altered
by the connection of lossless reciprocal networks (tun-
ers) at the in-port and out-port has already been men-
tioned in the introduction. These “essential properties”
are explicitly exhibited by the reflection coefficient
transformer, the one-way attenuator and the one-way
phase shifter of the modified Wheeler network. In this
connection both the forms in Fig. 3 and in Fig. 4 are
of interest.

One sees immediately that the nonreciprocal behavior
of a two-port is an “essential property.” Moreover,
when the form of Fig. 3 is employed the net nonrecipro-
cal behavior of any number of arbitrary two-ports
connected in tandem may be computed simply by multi-
plication of the amplifier phase shifters of the individual
networks. The dissipation associated with a two-port
is also an “essential property” in the following sense:
the ultimate gain (minimum attenuation) of a two-port
in either direction is that which results from the two
dissipative elements in the modified Wheeler representa-
tion of Fig. 4. The minimum attenuation which may be
achieved through any number of arbitrary two-ports
connected in tandem, with tuners at every junction, is
directly given by the product of these dissipative ele-
ments.

MEASUREMENT OF THE GENERAL NONRECIPROCAL
NETWORK

The measurement procedure indicated by Haus! holds
here also. Briefly, in view of (4) and (7) the input reflec-
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tion coefficient of the (reciprocal) modified Wheeler
network, corresponding to a given termination, is identi-
cal to the input reflection coefficient of the general (non-
reciprocal) two-port when it is similarly terminated.
It follows that the measurement of the general two-
port, by impedance techniques as already described
elsewhere,? will yield /i, 5, K, I, #2, and I;, the parameters
of the (reciprocal) modified Wheeler network.
Assuming that the scattering matrix of the general
two-port in Fig. 1 is given by S, that of the nonrecipro-
cal (ideal amplifier phase shifter) portion by .S, and
that of the reciprocal portion by S,, it is readily shown
(by the consideration of incident and reflected waves
at the various terminal planes) that the respective mu-
tual elements are related by
57'1257112 = Siz; 57215%21 = Sa1. (19)
It follows readily from the fact that .S,,, =S.,,, from (19)
and from the definition of the amplifier phase shifter,
which requires S,,,=1/.S,,,, that
Snie = 1/Sn; = £ = V/S1a/Sur. (20)
In consequence standard transmission type measure-
ments of Sp/Sy vield all the additionally necessary
information. Defining

Sip = I Sz

ei®n, So = ’ 5211 £12@21 (21)
one can readily identify 2 and ® in (4) in terms of the
measurable quantities as

E=TSu|/[Suls &= (®n — 3)/2 + ar,

n=20,1. (22)
The fact that only the ratio of magnitudes and the differ-
ence between phase angles need be known to obtain %
and ® obviates the necessity for determining the exact
values of either magnitudes or phase angles. These
quantities evidently need be determined only to within
an additive (for the phase angles) or a multiplicative
(for the magnitudes) constant so that certain scale or
equipment calibrations may be avoided. For measure-
ment procedures see especially Macpherson® and also
Pippin.”

APPENDIX 1

RELATIONSHIPS BETWEEN SCATTERING MATRIX
AND ABCD MATRIX

The voltages, currents, incident and reflected waves,
and matrix elements are defined in the standard man-
ner shown in Fig. 5 where

¢ A. C. Macpherson, “Measurement of microwave nonreciprocal
four-poles,” Proc. IRE, vol. 43, p. 1017; August, 1955.

7 J. E. Pippin, “Scattering matrix measurements on nonreciprocal
microwave devices,” Proc. IRE, vol. 44, p. 110; January, 1956.
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. I I, A+B-—-C—D y S12S01+(14S1) (1 —Su2)
Wt e n=— =
Ty 5 ‘_‘?«L‘ h, | A B \ A+ B+C+D 252
! v
o EA) 4 oco 2N
I B2 e B > 7 —A4+B—C+D —S S+ (14511) (14 822)
7 7 7 R Se=— e B=
A+B+C+D AL
Fig. 5.
2(4D— BC —~S12S0+ (1 =S (1 —82
by Su S\ (@ 18 A B\ [V, Sy AP BC) = 1) (1= 52)
= = > A+B+CHD AYH
by Se1 See/ \aa I, C D I
For reciprocity: Sig=3Ss For reciprocity AD —BC=1 Su 2 De S128a+ (1 —S1) (1+S2)
The matrix elements are related as follows: ne A+B+C+D - 254, .
AppENDIX 1]
TABLE 11
SUMMARY OF BILATERALLY MATCHED ELEMENTS
Kame of Element Seattering Matrix | Input-Output Network Symibol Conments
Relation
Traniﬁsion L O—C::—?-* Physical Length of
-10 M. =320 r e Waveguide iz £
e J 0 in" © out o+ o 6 = @g
One-Way Phase 0 1 o—{ ~—""1—0
Shifter ‘ ro= 30 r e__J'H )
=38 4 in out Wave Propsgating In
i o0 |pirection of Arrow
N Undergoes Phase Shift;
One-Way Phase -38 " O——————F—0 |Yave in Opposite ’
Snifter 0 e [.=ed° " e~/ Direction Remsins
n o Unaltered
1 0 o—{— 10
Reflectional )
Coefficient 0] K - o—{———"}F—0
Transformer r in™ K rou‘t K 0< K]
{Tdeal K 0
Attenuator) o——=——=—T}—0
) . -~
One<Way 0 1 O—J——t—"T]—0
Attermator Min= ® T ou K Wave Propagating In
K o0 0 [~—————} o | Directlon of Arrew
g Undergoes Attenuvationg
One-Hay O "0 Wave in Cpposite
A 0 K I g K Direction Remains
tt tor i .
ST 1 o) in out o [———1—0 Unaltered
rmaal An@l;ii‘iér: 7 s =7 Network is Active In
Phase Shifter 0 ke I? Moo T out o k&%) o | One Direction And
(Ratic Repeater) e 58 o pedo Passive in The Other
1/ke 0 °
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