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Nonreciprocal Two~Ports Represented
Modified Wheeler Networks*

H. M. ALTSCHULER~ AND W. K. KAHNt
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by

Surmnarg-The extension of the (reciprocal) modfied Wheeler

network to include the more general nonreciprocal two-port is given.

This representation is derived via a known decomposition of the

general nonreciprocal network into two portions, one reciprocal, the
other nonreciprocal. The reciprocal portion is then taken as the
modified Wheeler network. Recombhation of the elements results

in the desired representation which is constituted of a minimum
number, i.e., of eight, passive elements. Each of these is a natural
idealization of a physical microwave component. Siice six of the ele-

ments belong to the class of “bilaterally matched>> networks, some
of the properties of this class are discussed. Two of the bilaterally
matched elements embody the nonreciprocal properties of the net-

work: a one-way attenuator and a one-way phase-shifter. Many of

the characteristics of the (reciprocal) modified Wheeler network

carry over directly to this nonreciprocal representation. The micro-

wave measurement of the network parameters is also indicated.

IiwTRODuCTION

A
DIRECT extension of a representation of recipro-

cal two-ports to the case of nonreciprocal two-

ports has recently been described by Haus. 1 In

his paper he has given the decomposition of the general

nonreciprocal two-port into a reciprocal two-port and a

nonreciprocal one with certain useful commutation

properties. His choice of the Weiss f30ch network for

the reciprocal portion has resulted in essentially two

different representations. One of these, consisting of

eight elements, is ‘(mixed” in that the elements of the

reciprocal portion are expressed in standard impedance

(i.e., resistance and reactance) terms, while the non-

reciprocal portion is expressed in terms of its AB CD

coefficients. The other representation indicated employs

three gyrators in conjunction with ten impedance

parameters and is by comparison with the first repre-

sentation quite complicated. Clearly these parameters

are not all independent of one another. Their inter-

dependence is expressed by relatively complex equa-

tions.

What appears to be a more attractive representation,

and one more meaningful to the microwave engineer,

may be obtained in a manner similar to that employed

by Haus, when the modified Wheeler network,’ instead

of the Weissfloch network, is used to represent the recip-

* Manuscript received by the PGMTT, JLdy 16, 1956. Presented
before the National S~mposium on Microwave Technique:, Phila-
delphia, Pa., February 2–3, 1956. The work described in this report
was conducted under Contract AF-19 (604)-890 sponsored by the
AF Cambridge Res. Ctr.

~ Microwave Res. Inst., Polytechnic Inst. of Brooklyn, Brook-

lyn> N. Y.
1 H. A. Haus, “Equivalent circuit for a passive nonreciprocal net-

work, ” Y. Appl. Pkys., vol. 25, pp. 1500-1502; December, 1954.
~ ~ M, Alt~chlIler, ~~.~method of measuring dissipative four-poles

based & a modified Wheeler network” IRE TRANS., vol. MTT-3,
PP. 30–36: January, 1955; and “Representation and measurement of
a dissipative four-pole by means of a modified Wheeler network, ”
IRE TRANS., vol. I’GI 4, pp. 84–90; October, 1955.

rocal portion. In that case the nom-ecimocal elements

which are employed are, with the exception of their

“one-way” properties, conceptually similar to the reflec-

tion coefficient transformer (or ideal attenuator) and

the transmission lines which form part of the reciprocal

modified Wheeler network. In this sense the present net-

work representation is “homogeneous.” Furthermore,

at any single frequency this network is highly suggestive

of a procedure for synthesizing a nonreciprocal micro-

wave two-port structure with the properties exhibited

by the network. The network consists of the minimum

number of elements required to represent a nonrecipro-

cal two-port, i.e., of eight independent elements which

are the natural idealizations of physical microwave com-

ponents.

All but two of the network elements are “bilaterally

matched. ” Hence special attention has been paid to the

class of bilaterally matched networks. In particular,

a simple multiplication rule for their scattering matrices

has been stated which permits the ready manipulation

of such elements. Appendix II summarizes the various

bilaterally matched elements which are of interest here,

together with their scattering matrices and the network

symbols used to represent them.

In the evaluation of particular two-ports as com-

ponents for use in a microwave system, it is pointed

to distinguish certain “essential properties” of the com-

ponent from those which may be adjusted by the addi-

tion of Iossless reciprocal networks (tuners) at the

ports. These “essential properties” of a two-port, dissi-

pation and nonreciprocal behavior, are explicitly exhi-

bited by distinct bilaterally matched elements in the

modified Wheeler representation. The ultimate limita-

tions on the performance of a tandem connection of

such components may then be inferred by inspection.

As in the case treated by Haus, the measurement of

the network parameters here consists of the known meas-

urement of the reciprocal (modified Wheeler) network

in conjunction with the measurements necessary to ob-

tain the additional nonreciprocal parameters.

THE IDEAL .4MPLIFIER PHASE SHIFTER

The general linear, nonreciprocal, (not necessarily

passive) two-port can always be decomposed into a

reciprocal two-port in tandem with a nonreciprocal

two-port, as shown in Fig. 1 and (1). (See Appendix I

for definitions of A, B, C, D).

3 H. Schultz, “The transformation,, of the quadripole chain-
matrix into diagonal form, ” A r.~L. El. Ubertr., vol. 5, pp. 257-266;
June, 1951.
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l!IE”2m ‘:;;’:n”’exisThe physical content of (3), and the discussions based

6,W”RM REC/,4FtXAL
m7/’-~&P~ceAL 7.VO -PORT ~:g:g~g~~~~~ on it which lead to the extended form of the modified

(a) (b) Wheeler network, is preserved by a limiting argument.

It is assumed that S~l and S12 are always finite, nc)
Fig. 1—Decomposition of general two-port.

matter how small.

By the application of formulas given in Appendix I,

C :)=c: %’:” k:J ‘1)

the scattering matrix for the ideal amplifier phase shifter

can be shown to be

~Vhile this particular break-up is not the only one

possible, it is unique when, in addition, it is required

that the matrix representing the nonreciprocal two-port

commute with all other matrices, i.e., that it be a scalar

matrix. It can be seen that this requirement can, in

general, be met when one recalls that reciprocal two-

ports must obey the condition

AODO – BOCO= 1, (2)

and when the matrix representing the general non-

reciprocal two-port is dec-c}mposed as follows:

where

This decomposition assures that A ODO –BoCO = 1 and

yields the definition kc–@ = ~AD —B C. The ambiguity

in phase angle introduced by the square root is trivial.

The nonreciprocal two-port defined by the scalar

matrix in (3) has been termedl “ideal amplifier phase

shifter, 7’ and in a somewhat different context,4 “ratio

repeater. ” The scalar matrix kc-@ I (where 1 is the

unit matrix), of course, cclmmutes with all other ma-

trices. It follows that the ideal amplifier phase shifter

represented by it “commutes” with all other networks;

i.e., its effect on the properties of a cascade of net-

works is completely independent of its position within

the cascade.

For certain ideal or degenerate two-ports the termi-

l}al quantities (e. g., V, 1 or a, b) at the in- and out-ports

are not uniquely related. Examples are the one-way line

(S2, = 1, S,,= O) and the degenerate two-port consisting

of two entirely separate one-ports. Transfer descrip-

tions of such two-ports are singular. In terms of the

scattering matrix and the particular transfer descrip-

tion employed (Appendix I) one has generally

AHarold .4. 11’heeler, “Generalized transformer concepts for feed-
back amplifiers and filter network s,”N heeler Moncgraph no. 5;
August, 1948.

(4)

This class of two-ports, i.e., those described by scattering

matrices with Sll = O, Szz = O, and their properties are

of special interest and consequently discussed below.

BILATERALLY MATCHED NETWORKS

Two-ports characterized by zero values for the co-

efficients S1l and SZZ are said to be “bilateral y matched. ~’

This implies that no reflections arise at the in-port when

the out-port is terminated in its characteristic im-

pedance and vice versa. The general (normalized) scat-

tering matrix of this class of networks is given by

(5)

where Slz and SA are arbitrary complex numbers. of

course, the ideal amplifier phase shifter is a member of

this class [see (4) ]. From the well-known input-output

(voltage reflection coefficient) relation

(s1,s,2 – s12s,,)ro.t – S,l
I’i,, = ,

.sZzro,,t – I
(6)

one sees, by inspection, that for bilaterally matched

two-ports

I’i. = s12s21ro.t. (7)

In view of the absence of any reflections at their

junction, when two such two-ports, say

(s73andL’s:)
are placed in tandem it is recognized that the scattering

matrix of the tandem combination is

[

o S12’S12°

)S.21’S21” o “

One may then define the following multiplication rule:

where this product, which will be referred to here as

“star-product, ” applies specifically to the scattering

matrices of bilaterally matched two-ports whit’h have

been placed in tandem. Eq. (8) also implies that any
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bilaterally matched two-port may be arbitrarily de-

composed, in accordance with the star-product rule,

into two or more bilaterally matched two-ports in tan-

dem. In addition it follows from (8) that all two-ports

or network elements in this class commute with each

other, i.e., the order of any two or more adjacent bilater-

ally matched two-ports may be interchanged without

affecting the properties of the over-all network.

THE (RECIPROCAL) MODIFIED WHEELER NETWORK

The modified Wheeler network, which is shown in

Fig. 2, and methods for its measurement have already

+-, n,:l / : f?= ~

Fig. 2—Modified Wheeler network.

been described in detail elsewhere. 2 This network is a

suitable representation of dissipative, reciprocal, pas-

sive, linear two-ports and consists of three Iossless trans-

mission lines 11, 12, and 1, two ideal transformers nl: 1 and

1: n~, and a “reflection coefficient transformer” K. The

latter element5 is an ideal attenuator in that its scatter-

ing matrix is

OK

()
OS KS1.

KO’
(9)

The phase constant /3 of the transmission lines 11 and 1

is that associated with the in-port, while ~’, the phase

constant of line 12, is associated with the out-port. It

is also pertinent to point out that the scattering matrix

of a Iossless transmission line of electrical Iength O is

(lo)

EXTENSION OF THE MODIFIED WHEELER NETWORK

TO THE NONRECIPROCAL CASE

The method used by Hausl in conjunction with the

Weiasfloch network to represent nonreciprocal two-

ports can also be employed advantageously with re-

spect to the modified Wheeler representation. Assum-

ing the network break-up given in Fig. 1 and (1), one

may represent the reciprocal two-port by the modified

Wheeler network shown in Fig. 2. The ideal amplifier

phase shifter (ke–@I) is then commuted to a new posi-

tion between the elements K and 1, and the three bi-

laterally matched elements (K, ke–@I, 1) now located

between the two transformers are examined as indicated

below in conjunction with Fig. 3.

6 In terms of the notation used by Altschuler, op. cd., K is de-
fined by K’= [ral.

4
/DE4L

AMP[/F/EU @
PHAJE rSH/fT../?

M

Fig. 3—Three bilaterally matched elements.

The three elements when taken together are repre-

sented by the star-product of their scattering matrices,

[see (4), (9), and (10) ] which when decomposed into a

phase and a magnitude portion yields

Since all the dissipation or amplification produced by

the over-all network [such as in Fig. 1 (a)] is expressed

by the magnitude portion of (12), it is required that for

~assive networks this portion alone is also passive, i.e.,

that the scattering parameters of the magnitude por-

tion are subject to the condition

ISMI =Kk Sl and lSn,l =K/k Sl. (12)

Here K is restricted as indicated in (9) and k may con-

sequently be larger than unity. In any case, one will

have either k S 1 or I/k ~ 1. One can, therefore, demand

a decomposition of the magnitude portion into two

parts: one, a reciprocal passive element (.%z = S21 S 1) ;

the other, a nonreciprocal passive attenuator element

of such a type that complete transmission takes place

in one direction (ie., either /Slzl =1, or /.Sal\ =1).

Depending on the magnitude of k one then has

c:)’(K%Vfork=‘ (“a)

0’ (IL :)”(:/k?)fork=‘ (13b)

Analogously, the phase portion of (11) ma?- be de-

composed into

c‘-:)*(e-:-. ‘-’7)‘r ’14”

(1°:)”L:+*)‘-’T’)) (14b)

There is little reason to choose one alternative over

the other in (14).

It is now seen from (13) and (14) that the elements in

Fig. 3 can be represented by the star-product

/0 @—l(a—*)\

(
-.% ) for k s 1 (15a)

#j-i (d-@) o’
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for k > 1. (15b)

The reciprocal elements (SIZ = SJ of (15) are recognized

to be of the form of the elements described by (9) and

(10). The remaining elements (SIZ = 1 or S21 = 1) are

“one-way” devices, in particular ‘(one-way attenuators”:

O ,2

()

’01
fork Sl or

()
for k > 1, (16)

10 ,1/,2 O

and ‘cone-way phase shifters”

(17)

The associated network symbols, input-output relations,

etc., are listed in Appendix II.

Based on the break-up given in (15) passive non-

reciprocal two-ports can now be conveniently repre-

sented as shown in Fig. 4(a) or 4(b). Here L%=&?l,

o = ~z, and Oz= ~’Iz. It is recognized that the particular

break-up employed is only one of an infinite variety of

possible ones; however, it is unique and meaningful in

that each of the resulting elements performs a single

well-defined function and is described by a single real

Fig. 4—Extension of the modified Wheeler net-
work to the nonreciprocal case.

number. Elements have been chosen in such a manner

that (in the case of passive networks) all resulting ele-

ments are again necessarily passive. Clearly, when

active networks are considered, elements such as “recip -

rocal amplifiers” or “one-way amplifiers” can be de-

fined. As in the reciprocal case of the modified Wheeler

network, all characteristic impedances are normalized

to unity and the phase constant of the elements between

transformers is arbitrarily assumed to be that associated

with the in-port.

Each of the elements employed is particularly ~signif -

icant in context with certain practical microwave-

structures in that close equivalences exist as shown in

Table I (below). The elements of the [network of Fig.

TABLE I

Idealized

E24wF3nk

Tmu’lsmissl%m

Mm

Ideal
transformer

Reflection
c30ef f ieient
transform=?

One-way phase
S&lifter

*

Ckw=way
attenuator

fhnponent Hh@oyed

in Realization of

Element

Wawguide

WkiU! matched
practical
attenuator

Well mntched practZca31
nonreciprocal ‘ phase
sFCifier

Wdl.3. matched praotical
nonreciprocal

at%muat or

l@presentation

CK CkqxMwnt

.—.
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4 consequently have physical meaning and lend them-

selves to a procedure for synthesizing physical two-ports

with the properties of the network at the given fre-

quency. The fact that the available microwave com-

ponents are composite of our idealized elements is readily

overcome in view of the commutivity of the bilaterally

matched elements and the simple computations afforded

by the star-product rule.

The break-up given here of the portion of the network

between the transformers is to be looked upon as a

systematic network description employing ideal ele-

ments which are defined in terms of their function and

which may serve as a guide to synthesizing two-port

structures with the properties of the network at the

given frequency. With respect to such ‘(synthesis, ”

it is recognized that the reflection coefficient transform-

er, fol example, must be realized by means of the at-

tenuation of a practical nonreciprocal attenuator in

conjunction with the small reciprocal attenuation in-

herent in such components. Once the present point of

view is adopted, it is of course adequate for many pur-

poses to lump the three bilaterally matched elements

(in Fig. 3) into a single network. The scattering matrix

of this combination is

(18)

The distinction between the ‘(essential properties”

of a two-port and those properties which may be altered

by the connection of Iossless reciprocal networks (tun-

ers) at the in-port and out-port has already been men-

tioned in the introduction. These “essential properties”

are explicitly exhibited by the reflection coefficient

transformer, the one-way attenuator and the one-way

phase shifter of the modified Wheeler network. In this

connection both the forms in Fig. 3 and in Fig. 4 are

of interest.

One sees immediately that the nonreciprocal behavior

of a two-port is an “essential property, ” Moreover,

when the form of Fig. 3 is employed the net nonrecipro-

cal behavior of any number of arbitrary two-ports

connected in tandem may be computed simply by multi-

plication of the amplifier phase shifters of the individual

networks. The dissipation associated with a two-port

is also an “essential property” in the following sense:

the ultimate gain (minimum attenuation) of a two-port

in either direction is that which results from the two

dissipative elements in the modified Wheeler representa-

tion of Fig. 4. The minimum attenuation which may be

achieved through any number of arbitrary two-ports

connected in tandem, with tuners at every junction, is

directly given by the product of these dissipative ele-

ments.

MEASUREMENT OF THE GENERAL NONRECIPROCAL

NETWORK

The measurement procedure indicated by Hausl holds

here also. Briefly, in view of (4) and (7) the input reflec-

tion coefficient of the (reciprocal) modifiecl Wheeler

network, corresponding to a given termination, is identi-

cal to the input reflection coefficient of the general (non-

reciprocal) two-port when it is similarly terminated.

It follows that the measurement of the general two-

port, by impedance techniques as already described

elsewhere, Zwill yield 11, nl, K, 1, 7Z2,and 12, the parameters

of the (reciprocal) modified Wheeler network.

Assuming that the scattering matrix of the general

two-port in Fig. 1 is given by S, that of the nonrecipro-

cal (ideal amplifier phase shifter) portion by S., and

that of the reciprocal portion by S,, it is readily shown

(by the consideration of incident and reflected waves

at the various terminal planes) that the respective mu-

tual elements are related by

S.lJ.,, = 512; Sr,lsrl,, = S21. (19)

It follows readily from the fact that S.,, = S,,l, from (19)

and from the definition of the amplifier phase shifter,

which requires Sn19 = 1/Sn~I, that

s.,, = 1/s.21 = * = ds12//s2l. (20)

In consequence standard transmission type measure-

ments of S12/S21 yield all the additionally necessary

information. Defining

512= ISN\ e@12, S21 = I S21 I e~2@~J (21)

one can readily identify k and Q in (4) in terms of the

measurable quantities as

k=<ls121/ls21!; @ = (%1 – %2),/2 + 72ir,

?2 = 0, 1. (22)

The fact that only the ratio of magnitudes and the di~er-

ence between phase angles need be known to obtain k

and @ obviates the necessity for determining the exact

values of either magnitudes or phase angles. These

quantities evidently need be determined only to within

an additive (for the phase angles) or a multiplicative

(for the magnitudes) constant so that certain scale or

equipment calibrations may be avoided, For measure-

ment procedures see especially Macpherson6 and also

Pippin.7

APPENDIX I

RELATIOMHIPS BETWEEN SCATTERING MATRIX

AND AB CD MATRIX

The voltages, currents, incident and reflected waves,

and matrix elements are defined in the standard man-

ner shown in Fig. 5 where

‘ A. C. McPherson, “Measurement of microwave nom-eciprocai
four-poles, ” PROC. IRE, vol. 43, p. 1017; August, 1955.

7 J. E. Pippin, “Scattering matrix measurements on nonreciprocal
microwave devices, ” PROC. IRE, vol. 44, p. 110; January, 1956.
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Zml$ Iraq::::.? ’=:::s:::
J ~ ~ B=

A+ B+C+D 2s?,

Fig. !5.

2 (AD – K’) –s12s,1+(1 –s11)(1 –s,2)

t)= (::3(::) (:)= t: 3(3

5’]2= c=- .——
.4+ B+C+D 2S*I

For reciprocity: S,z = SZl For reciprocity AD –BC = 1 ~ D= _s,A’21+ (1 --s11)(1+s,2)

The matrix elements are related as follows:
,s’21=

.4+ B+C+D 2s,1

APPENDIX II

TABLE 11

SUMMARY or BILATERALLY &IATCEED ELEMENTS
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.+O
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